Gemma Hosting — Deploy Gemma 3/2 Models with Ollama, vLLM, TGI, TensorRT-LLM & GGML
Unlock the full potential of Google DeepMind’s Gemma 2B, 7B, 9B, and 27B models with our optimized Gemma Hosting solutions. Whether you prefer low-latency inference via vLLM, user-friendly setup with Ollama, enterprise-grade performance through TensorRT-LLM, or offline deployment using GGML, our infrastructure supports it all. Ideal for AI research, chatbot APIs, fine-tuning, or private in-house applications, Gemma Hosting ensures scalable performance with GPU-powered servers. Deploy Gemma models securely and efficiently—tailored for developers, enterprises, and innovators.
Gemma Hosting with Ollama — GPU Recommendation
Model Name | Size (4-bit Quantization) | Recommended GPUs | Tokens/s |
---|---|---|---|
gemma3:1b | 815MB | P1000 < GTX1650 < GTX1660 < RTX2060 | 28.90-43.12 |
gemma2:2b | 1.6GB | P1000 < GTX1650 < GTX1660 < RTX2060 | 19.46-38.42 |
gemma3:4b | 3.3GB | GTX1650 < GTX1660 < RTX2060 < T1000 < RTX3060 Ti < RTX4060 < RTX5060 | 28.36-80.96 |
gemma2:9b | 5.4GB | T1000 < RTX3060 Ti < RTX4060 < RTX5060 | 12.83-21.35 |
gemma3n:e2b | 5.6GB | T1000 < RTX3060 Ti < RTX4060 < RTX5060 | 30.26-56.36 |
gemma3n:e4b | 7.5GB | A4000 < A5000 < V100 < RTX4090 | 38.46-70.90 |
gemma3:12b | 8.1GB | A4000 < A5000 < V100 < RTX4090 | 30.01-67.92 |
gemma2:27b | 16GB | A5000 < A6000 < RTX4090 < A100-40gb < H100 = RTX5090 | 28.79-47.33 |
gemma3:27b | 17GB | A5000 < RTX4090 < A100-40gb < H100 = RTX5090 | 28.79-47.33 |
Gemma Hosting with vLLM + Hugging Face — GPU Recommendation
Model Name | Size (16-bit Quantization) | Recommended GPU(s) | Concurrent Requests | Tokens/s |
---|---|---|---|---|
google/gemma-3n-E4B-it | ||||
google/gemma-3-4b-it | 8.1GB | A4000 < A5000 < V100 < RTX4090 | 50 | 2014.88-7214.10 |
google/gemma-2-9b-it | 18GB | A5000 < A6000 < RTX4090 | 50 | 951.23-1663.13 |
google/gemma-3-12b-it | ||||
google/gemma-3-12b-it-qat-q4_0-gguf | 23GB | A100-40gb < 2*A100-40gb< H100 | 50 | 477.49-4193.44 |
google/gemma-2-27b-it | ||||
google/gemma-3-27b-it | ||||
google/gemma-3-27b-it-qat-q4_0-gguf | 51GB | 2*A100-40gb < A100-80gb < H100 | 50 | 1231.99-1990.61 |
Express GPU Dedicated Server - P1000
Best For College Project
-
- 32 GB RAM
- GPU: Nvidia Quadro P1000
- Eight-Core Xeon E5-2690î…
- 120GB + 960GB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Basic GPU Dedicated Server - T1000
For business
-
- 64 GB RAM
- GPU: Nvidia Quadro T1000
- Eight-Core Xeon E5-2690î…
- 120GB + 960GB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Basic GPU Dedicated Server - GTX 1650
For business
- 64GB RAM
- GPU: Nvidia GeForce GTX 1650
- Eight-Core Xeon E5-2667v3î…
- 120GB + 960GB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Basic GPU Dedicated Server - GTX 1660
For business
- 64GB RAM
- GPU: Nvidia GeForce GTX 1660
- Dual 10-Core Xeon E5-2660v2î…
- 120GB + 960GB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Advanced GPU Dedicated Server - V100
Best For College Project
- 128GB RAM
- GPU: Nvidia V100
- Dual 12-Core E5-2690v3î…
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Professional GPU Dedicated Server - RTX 2060
For business
- 128GB RAM
- GPU: Nvidia GeForce RTX 2060
- Dual 10-Core E5-2660v2î…
- 120GB + 960GB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Advanced GPU Dedicated Server - RTX 2060
For business
- 128GB RAM
- GPU: Nvidia GeForce RTX 2060
- Dual 20-Core Gold 6148î…
- 120GB + 960GB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Advanced GPU Dedicated Server - RTX 3060 Ti
For business
- 128GB RAM
- GPU: GeForce RTX 3060 Ti
- Dual 12-Core E5-2697v2î…
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Professional GPU VPS - A4000
For Business
- 32GB RAM
- 24 CPU Cores
- 320GB SSD
- 300Mbps Unmetered Bandwidth
- Once per 2 Weeks Backup
- OS: Linux / Windows 10/ Windows 11
Advanced GPU Dedicated Server - A4000
For business
- 128GB RAM
- GPU: Nvidia Quadro RTX A4000
- Dual 12-Core E5-2697v2î…
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Advanced GPU Dedicated Server - A5000
For business
- 128GB RAM
- GPU: Nvidia Quadro RTX A5000
- Dual 12-Core E5-2697v2î…
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Enterprise GPU Dedicated Server - A40
For business
- 256GB RAM
- GPU: Nvidia A40
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Basic GPU Dedicated Server - RTX 5060
For Business
- 64GB RAM
- GPU: Nvidia GeForce RTX 5060
- 24-Core Platinum 8160î…
- 120GB SSD + 960GB SSD
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Enterprise GPU Dedicated Server - RTX 5090
For business
- 256GB RAM
- GPU: GeForce RTX 5090
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Enterprise GPU Dedicated Server - A100
For business
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Enterprise GPU Dedicated Server - A100(80GB)
For business
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Enterprise GPU Dedicated Server - H100
For Business
- 256GB RAM
- GPU: Nvidia H100
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server- 2xRTX 4090
For business
- 256GB RAM
- GPU: 2 x GeForce RTX 4090
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server- 2xRTX 5090
For business
- 256GB RAM
- GPU: 2 x GeForce RTX 5090
- Dual Gold 6148î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 2xA100
For business
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 2xRTX 3060 Ti
For Business
- 128GB RAM
- GPU: 2 x GeForce RTX 3060 Ti
- Dual 12-Core E5-2697v2î…
- 240GB SSD + 2TB SSD
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 2xRTX 4060
For business
- 64GB RAM
- GPU: 2 x Nvidia GeForce RTX 4060
- Eight-Core E5-2690î…
- 120GB SSD + 960GB SSD
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 2xRTX A5000
For business
- 128GB RAM
- GPU: 2 x Quadro RTX A5000
- Dual 12-Core E5-2697v2î…
- 240GB SSD + 2TB SSD
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 2xRTX A4000
For business
- 128GB RAM
- GPU: 2 x Quadro RTX A5000
- Dual 12-Core E5-2697v2î…
- 240GB SSD + 2TB SSD
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 3xRTX 3060 Ti
For Business
- 256GB RAM
- GPU: 3 x GeForce RTX 3060 Ti
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 3xV100
For business
- 256GB RAM
- GPU: 3 x Nvidia V100
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 3xRTX A5000
For business
- 256GB RAM
- GPU: 3 x Quadro RTX A5000
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 3xRTX A6000
For business
- 256GB RAM
- GPU: 3 x Quadro RTX A6000
- Dual 18-Core E5-2697v4î…
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 4xA100
For Business
- 512GB RAM
- GPU: 4 x Nvidia A100
- Dual 22-Core E5-2699v4î…
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 4xRTX A6000
For business
- 512GB RAM
- GPU: 4 x Quadro RTX A6000
- Dual 22-Core E5-2699v4î…
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 8xV100
For business
- 512GB RAM
- GPU: 8 x Nvidia Tesla V100
- Dual 22-Core E5-2699v4î…
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbpsî…
- OS: Windows / Linux
Multi-GPU Dedicated Server - 8xRTX A6000
For business
- 512GB RAM
- GPU: 8 x Quadro RTX A6000
- Dual 22-Core E5-2699v4î…
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbpsî…
- OS: Windows / Linux

What is Gemma Hosting?
Gemma Hosting is the deployment and serving of Google’s Gemma language models (like Gemma 2B and Gemma 7B) on dedicated hardware or cloud infrastructure for various applications such as chatbots, APIs, or research environments.
Gemma is a family of open-source, lightweight large language models (LLMs) released by Google, designed for efficient inference on consumer GPUs and enterprise workloads. They are smaller and more efficient than models like GPT or LLaMA, making them ideal for cost-effective hosting.
LLM Benchmark Results for Gemma 1B/2B/4B/9B/12B/27B Hosting
Ollama Benchmark for Gemma
vLLM Benchmark for Gemma
How to Deploy Gemma LLMs with Ollama/vLLM

Install and Run Gemma Locally with Ollama >

Install and Run Gemma Locally with vLLM v1 >
What Does Gemma Hosting Stack Include?

Hardware Stack
✅ GPU: NVIDIA RTX 3060 / T4 / 4060 (8–12 GB VRAM), NVIDIA RTX 4090 / A100 / H100 (24–80 GB VRAM)
✅ CPU: 4+ cores (Intel/AMD)
✅ RAM: 16–32 GB
✅ Storage: SSD, 50–100 GB free (for model files and logs)
✅ Networking: 1 Gbps for API access (if remote)
✅ Power & Cooling: Efficient PSU & cooling system, Required for stable GPU performance

Software Stack
✅ OS: Ubuntu 20.04 / 22.04 LTS(preferred), or other Linux distros
✅ Driver & CUDA: NVIDIA GPU Drivers + CUDA 11.8+ (depends on inference engine)
✅ Model Runtime: Ollama/vLLM/ Hugging Face Transformers/Text Generation Inference (TGI)
✅ Model Format: Gemma FP16 / INT4 / GGUF (depending on use case and platform)
✅ Containerization: Docker + NVIDIA Container Toolkit (optional but recommended for deployment)
✅ API Framework: FastAPI, Flask, or Node.js-based backend for serving LLM endpoints
✅ Monitoring: Prometheus + Grafana, or basic logging tools
✅ Optional Tools: Nginx (reverse proxy), Redis (cache), JWT/Auth layer for production deployment
Why Gemma Hosting Needs a GPU Hardware + Software Stack
Gemma Models Are GPU-Accelerated by Design
Inference Speed and Latency Optimization
High Memory and Efficient Software Stack Required
Scalability and Production-Ready Deployment
Self-hosted Gemma Hosting vs. Gemma as a Service
Feature | Self-hosted Gemma Hosting | Gemma as a Service (aaS) |
---|---|---|
Deployment Control | Full control over model, infra, scaling & updates | Limited — managed by provider |
Customization | High — optimize models, quantization, backends | Low — predefined settings and APIs |
Performance | Tuned for specific workloads (e.g. vLLM, TensorRT-LLM) | General-purpose, may include usage limits |
Initial Cost | High — GPU server or cluster required | Low — pay-as-you-go pricing |
Recurring Cost | Lower long-term for consistent usage | Can get expensive at scale or high usage |
Latency | Lower (models run locally or in private cloud) | Higher due to shared/public infrastructure |
Security & Compliance | Private data stays in your environment | Depends on provider’s data policies |
Scalability | Manual or automated scaling with Kubernetes, etc. | Automatically scalable (but capped by plan) |
DevOps Effort | High — setup, monitoring, updates | None — fully managed |
Best For | Companies needing full control & optimization | Startups, small teams, quick prototyping |
FAQs of Gemma 3/2 Models Hosting
What are Gemma models, and who developed them?
Gemma is a family of open-weight language models developed by Google DeepMind, optimized for fast and efficient deployment. They are similar in architecture to Google’s Gemini and include variants like Gemma-3 1B, 4B, 12B, and 27B.
What are the typical use cases for hosting Gemma models?
Gemma models are well-suited for:
- Chatbots and conversational agents
- Text summarization, Q&A, and content generation
- Fine-tuning on domain-specific data
- Academic or commercial NLP research
- On-premises privacy-compliant LLM applications
Which inference engines are compatible with Gemma models?
You can deploy Gemma models using:
- vLLM (optimized for high-throughput inference)
- Ollama (easy local serving with model quantization)
- TensorRT-LLM (for performance on NVIDIA GPUs)
- Hugging Face Transformers + Accelerate
- Text Generation Inference (TGI)
Can Gemma models be fine-tuned or customized?
Yes. Gemma supports LoRA fine-tuning and full fine-tuning, making it a good choice for domain-specific LLMs. You can use tools like PEFT, Hugging Face Transformers, or Axolotl for training.
What are the benefits of self-hosting Gemma vs using it via API?
Self-hosting provides:
- Better data privacy
- Customization flexibility
- Lower cost at scale
- Lower latency (for edge or private deployment)
However, APIs are easier to get started with and require no infrastructure.
Is Gemma available on Hugging Face for vLLM?
Yes. Most Gemma 3 models (1B, 4B, 12B, 27B) are available on Hugging Face and can be loaded into vLLM using 16-bit quantization.