DeepSeek Hosting: Deploy R1, V2, V3, and Distill Models Efficiently
DeepSeek Hosting allows you to deploy, serve, and scale DeepSeek’s large language models (LLMs)—such as DeepSeek R1, V2, V3, coder, and Distill variants—in high-performance GPU environments. It enables developers, researchers, and companies to run DeepSeek models efficiently via APIs or interactive applications.
DeepSeek Hosting with Ollama — GPU Recommendation
Model Name | Size (4 bit Quantization) | Recommended GPU | Token/s |
---|---|---|---|
deepseek-coder:1.3b | 776MB | P1000 < T1000 < GTX1650 < GTX1660 < RTX2060 | 28.9-50.32 |
deepSeek-r1:1.5B | 1.1GB | P1000 < T1000 < GTX1650 < GTX1660 < RTX2060 | 25.3-43.12 |
deepseek-coder:6.7b | 3.8GB | T1000 < RTX3060 Ti < RTX4060 < A4000 < RTX5060 < V100 | 26.55-90.02 |
deepSeek-r1:7B | 4.7GB | T1000 < RTX3060 Ti < RTX4060 < A4000 < RTX5060 < V100 | 26.70-87.10 |
deepSeek-r1:8B | 5.2GB | T1000 < RTX3060 Ti < RTX4060 < A4000 < RTX5060 < V100 | 21.51-87.03 |
deepSeek-r1:14B | 9.0GB | A4000 < A5000 < V100 | 30.2-48.63 |
deepseek-v2:16B | 8.9GB | A4000 < A5000 < V100 | 22.89-69.16 |
deepSeek-r1:32B | 20GB | A5000 < RTX4090 < A100-40gb < RTX5090 | 24.21-45.51 |
deepseek-coder:33b | 19GB | A5000 < RTX4090 < A100-40gb < RTX5090 | 25.05-46.71 |
deepSeek-r1:70B | 43GB | A40 < A6000 < 2*A100-40gb < A100-80gb < H100 < 2*RTX5090 | 13.65-27.03 |
deepseek-v2:236B | 133GB | 2*A100-80gb < 2*H100 | — |
deepSeek-r1:671B | 404GB | 6*A100-80gb < 6*H100 | — |
deepseek-v3:671B | 404GB | 6*A100-80gb < 6*H100 | — |
DeepSeek Hosting with vLLM + Hugging Face — GPU Recommendation
Model Name | Size | Recommended GPU | Concurrent Requests | Tokens |
---|---|---|---|---|
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑1.5B | ~3GB | T1000 < RTX3060 < RTX4060 < 2*RTX3060 < 2*RTX4060 < A4000 < V100 | 50 | 1500-500 |
deepseek-ai/deepseek‑coder‑6.7b‑instruct | ~13.4GB | A5000 < RTX4090 | 50 | 1375-4120 |
deepseek-ai/Janus‑Pro‑7B | ~14GB | A5000 < RTX4090 | 50 | 1333-4009 |
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑7B | ~14GB | A5000 < RTX4090 | 50 | 1333-4009 |
deepseek-ai/DeepSeek‑R1‑Distill‑Llama‑8B | ~16GB | 2*A4000 < 2*V100 < A5000 < RTX4090 | 50 | 1450-2769 |
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑14B | ~28GB | 3*V100 < 2*A5000 < A40 < A6000 < A100-40gb < 2*RTX4090 | 50 | 449-861 |
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑32B | ~65GB | A100-80gb < 2*A100-40gb < 2*A6000 < H100 | 50 | 577-1480 |
deepseek-ai/deepseek‑coder‑33b‑instruct | ~66GB | A100-80gb < 2*A100-40gb < 2*A6000 < H100 | 50 | 570-1470 |
deepseek-ai/DeepSeek‑R1‑Distill‑Llama‑70B | ~135GB | 4*A6000 | 50 | 466 |
deepseek-ai/DeepSeek‑Prover‑V2‑671B | ~1350GB | — | — | — |
deepseek-ai/DeepSeek‑V3 | ~1350GB | — | — | — |
deepseek-ai/DeepSeek‑R1 | ~1350GB | — | — | — |
deepseek-ai/DeepSeek‑R1‑0528 | ~1350GB | — | — | — |
deepseek-ai/DeepSeek‑V3‑0324 | ~1350GB | — | — | — |
Model Name | Size | Recommended GPU | Concurrent Requests | Tokens |
---|---|---|---|---|
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑1.5B | ~3GB | T1000 < RTX3060 < RTX4060 < 2*RTX3060 < 2*RTX4060 < A4000 < V100 | 50 | 1500-500 |
deepseek-ai/deepseek‑coder‑6.7b‑instruct | ~13.4GB | A5000 < RTX4090 | 50 | 1375-4120 |
deepseek-ai/Janus‑Pro‑7B | ~14GB | A5000 < RTX4090 | 50 | 1333-4009 |
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑7B | ~14GB | A5000 < RTX4090 | 50 | 1333-4009 |
deepseek-ai/DeepSeek‑R1‑Distill‑Llama‑8B | ~16GB | 2*A4000 < 2*V100 < A5000 < RTX4090 | 50 | 1450-2769 |
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑14B | ~28GB | 3*V100 < 2*A5000 < A40 < A6000 < A100-40gb < 2*RTX4090 | 50 | 449-861 |
deepseek-ai/DeepSeek‑R1‑Distill‑Qwen‑32B | ~65GB | A100-80gb < 2*A100-40gb < 2*A6000 < H100 | 50 | 577-1480 |
deepseek-ai/deepseek‑coder‑33b‑instruct | ~66GB | A100-80gb < 2*A100-40gb < 2*A6000 < H100 | 50 | 570-1470 |
deepseek-ai/DeepSeek‑R1‑Distill‑Llama‑70B | ~135GB | 4*A6000 | 50 | 466 |
deepseek-ai/DeepSeek‑Prover‑V2‑671B | ~1350GB | — | — | — |
deepseek-ai/DeepSeek‑V3 | ~1350GB | — | — | — |
deepseek-ai/DeepSeek‑R1 | ~1350GB | — | — | — |
deepseek-ai/DeepSeek‑R1‑0528 | ~1350GB | — | — | — |
deepseek-ai/DeepSeek‑V3‑0324 | ~1350GB | — | — | — |
Express GPU Dedicated Server - P1000
Best For College Project
-
- 32 GB RAM
- GPU: Nvidia Quadro P1000
- Eight-Core Xeon E5-2690
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Basic GPU Dedicated Server - T1000
For business
-
- 64 GB RAM
- GPU: Nvidia Quadro T1000
- Eight-Core Xeon E5-2690
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Basic GPU Dedicated Server - GTX 1650
For business
- 64GB RAM
- GPU: Nvidia GeForce GTX 1650
- Eight-Core Xeon E5-2667v3
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Basic GPU Dedicated Server - GTX 1660
For business
- 64GB RAM
- GPU: Nvidia GeForce GTX 1660
- Dual 10-Core Xeon E5-2660v2
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Advanced GPU Dedicated Server - V100
Best For College Project
- 128GB RAM
- GPU: Nvidia V100
- Dual 12-Core E5-2690v3
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Professional GPU Dedicated Server - RTX 2060
For business
- 128GB RAM
- GPU: Nvidia GeForce RTX 2060
- Dual 10-Core E5-2660v2
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Advanced GPU Dedicated Server - RTX 2060
For business
- 128GB RAM
- GPU: Nvidia GeForce RTX 2060
- Dual 20-Core Gold 6148
- 120GB + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Advanced GPU Dedicated Server - RTX 3060 Ti
For business
- 128GB RAM
- GPU: GeForce RTX 3060 Ti
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Professional GPU VPS - A4000
For Business
- 32GB RAM
- 24 CPU Cores
- 320GB SSD
- 300Mbps Unmetered Bandwidth
- Once per 2 Weeks Backup
- OS: Linux / Windows 10/ Windows 11
Advanced GPU Dedicated Server - A4000
For business
- 128GB RAM
- GPU: Nvidia Quadro RTX A4000
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Advanced GPU Dedicated Server - A5000
For business
- 128GB RAM
- GPU: Nvidia Quadro RTX A5000
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Enterprise GPU Dedicated Server - A40
For business
- 256GB RAM
- GPU: Nvidia A40
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
Basic GPU Dedicated Server - RTX 5060
For Business
- 64GB RAM
- GPU: Nvidia GeForce RTX 5060
- 24-Core Platinum 8160
- 120GB SSD + 960GB SSD
- 100Mbps-1Gbps
- OS: Windows / Linux
Enterprise GPU Dedicated Server - RTX 5090
For business
- 256GB RAM
- GPU: GeForce RTX 5090
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
Enterprise GPU Dedicated Server - A100
For business
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
Enterprise GPU Dedicated Server - A100(80GB)
For business
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
Enterprise GPU Dedicated Server - H100
For Business
- 256GB RAM
- GPU: Nvidia H100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 100Mbps-1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server- 2xRTX 4090
For business
- 256GB RAM
- GPU: 2 x GeForce RTX 4090
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server- 2xRTX 5090
For business
- 256GB RAM
- GPU: 2 x GeForce RTX 5090
- Dual Gold 6148
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 2xA100
For business
- 256GB RAM
- GPU: Nvidia A100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 2xRTX 3060 Ti
For Business
- 128GB RAM
- GPU: 2 x GeForce RTX 3060 Ti
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 2xRTX 4060
For business
- 64GB RAM
- GPU: 2 x Nvidia GeForce RTX 4060
- Eight-Core E5-2690
- 120GB SSD + 960GB SSD
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server- 2xRTX 5090
For business
- 256GB RAM
- GPU: 2 x GeForce RTX 5090
- Dual Gold 6148
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 2xRTX A4000
For business
- 128GB RAM
- GPU: 2 x Quadro RTX A5000
- Dual 12-Core E5-2697v2
- 240GB SSD + 2TB SSD
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 3xRTX 3060 Ti
For Business
- 256GB RAM
- GPU: 3 x GeForce RTX 3060 Ti
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 3xV100
For business
- 256GB RAM
- GPU: 3 x Nvidia V100
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 3xRTX A5000
For business
- 256GB RAM
- GPU: 3 x Quadro RTX A5000
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 3xRTX A6000
For business
- 256GB RAM
- GPU: 3 x Quadro RTX A6000
- Dual 18-Core E5-2697v4
- 240GB SSD + 2TB NVMe + 8TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 4xA100
For Business
- 512GB RAM
- GPU: 4 x Nvidia A100
- Dual 22-Core E5-2699v4
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 4xRTX A6000
For business
- 512GB RAM
- GPU: 4 x Quadro RTX A6000
- Dual 22-Core E5-2699v4
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 8xV100
For business
- 512GB RAM
- GPU: 8 x Nvidia Tesla V100
- Dual 22-Core E5-2699v4
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbps
- OS: Windows / Linux
Multi-GPU Dedicated Server - 8xRTX A6000
For business
- 512GB RAM
- GPU: 8 x Quadro RTX A6000
- Dual 22-Core E5-2699v4
- 240GB SSD + 4TB NVMe + 16TB SATA
- 1Gbps
- OS: Windows / Linux

What is DeepSeek Hosting?
DeepSeek Hosting enables users to serve, infer, or fine-tune DeepSeek models (like R1, V2, V3, or Distill variants) through either self-hosted environments or cloud-based APIs. DeepSeek Hosting Types include Self-Hosted Deployment and LLM-as-a-Service (LLMaaS)
.
✅ Self-hosted deployment means deploying on GPU servers (e.g. A100, 4090, H100) using inference engines such as vLLM, TGI, or Ollama, and users can control model files, batch processing, memory usage, and API logic
✅ LLM as a Service (LLMaaS) uses DeepSeek models through API providers, without deployment, just calling API
LLM Benchmark Test Results for DeepSeek R1, V2, V3, and Distill Hosting
Ollama Benchmark for Deepseek
vLLM Benchmark for Deepseek
How to Deploy DeepSeek LLMs with Ollama/vLLM

Install and Run DeepSeek-R1 Locally with Ollama >

Install and Run DeepSeek-R1 Locally with vLLM v1 >
What Does DeepSeek Hosting Stack Include?
Model Backend (Inference Engine)
- vLLM — For high-throughput, low-latency serving
- Ollama — Lightweight local inference with simple CLI/API
- TGI — Hugging Face’s production-ready server
- TensorRT-LLM / FasterTransformer — For optimized GPU serving
Model Format
- FP16 / BF16 — Full precision, high accuracy
- INT4 / GGUF — Quantized formats for faster, smaller deployments
- Safetensors — Secure, fast-loading file format
- Models usually pulled from Hugging Face Hub or local registry
Serving Infrastructure
- Docker — For isolated, GPU-accelerated containers
- CUDA (>=11.8) + cuDNN — Required for GPU inference
- Python (>=3.10) — vLLM and Ollama runtime
- FastAPI / Flask / gRPC — Optional API layer for integration
- Nginx / Traefik — As reverse proxy for scaling and SSL
Hardware (GPU Servers)
- High VRAM GPUs (A100, H100, 4090, 3090, etc.)
- Multi-GPU or NVLink setups for models ≥32B
- Dedicated Inference Nodes with 24GB+ VRAM recommended
Why DeepSeek Hosting Needs a Specialized Hardware + Software Stack
DeepSeek Models Are Large and Compute-Intensive
Powerful GPUs Are Required
Efficient Inference Engines Are Critical
Scalable Infrastructure Is a Must
Self-hosted DeepSeek Hosting vs. DeepSeek LLM as a Service
Feature / Aspect | 🖥️ Self-hosted DeepSeek Hosting | ☁️ DeepSeek LLM as a Service (LLMaaS) |
---|---|---|
Deployment Location | On your own GPU server (e.g., A100, 4090, H100) | Cloud-based, via API platforms |
Model Control | ✅ Full control over weights, versions, updates | ❌ Limited — only exposed models via provider |
Customization | Full — supports fine-tuning, LoRA, quantization | None or minimal customization allowed |
Privacy & Data Security | ✅ Data stays local — ideal for sensitive data | ❌ Data sent to third-party cloud API |
Performance Tuning | Full control: batch size, concurrency, caching | Predefined, limited tuning |
Supported Models | Any DeepSeek model (R1, V2, V3, Distill, etc.) | Only what the provider offers |
Inference Engine Options | vLLM, TGI, Ollama, llama.cpp, custom stacks | Hidden — provider chooses backend |
Startup Time | Slower — requires setup and deployment | Instant — API ready to use |
Scalability | Requires infrastructure management | Scales automatically with provider's backend |
Cost Model | Higher upfront (hardware), lower at scale | Pay-per-call or token-based — predictable, but expensive at scale |
Use Case Fit | Ideal for R&D, private deployment, large workloads | Best for prototypes, demos, or small-scale usage |
Example Platforms | Dedicated GPU servers, on-premise clusters | DBM, Together.ai, OpenRouter.ai, Fireworks.ai, Groq |
FAQs of DeepSeek R1, V2, V3, and Distill Models Hosting
What are the hardware requirements for hosting DeepSeek models?
Hardware needs vary by model size:
- Small models (1.5B – 7B): ≥16GB VRAM (e.g., RTX 3090, 4090)
- Medium models (8B – 14B): ≥24–48GB VRAM (e.g., A40, A100, 4090)
- Large models (32B – 70B+): Multi-GPU setup or high-memory GPUs (e.g., A100 80GB, H100)
What inference engines are compatible with DeepSeek models?
You can serve DeepSeek models using:
- vLLM (high throughput, optimized for production)
- Ollama (simple local inference, CLI-based)
- TGI (Text Generation Inference)
- Exllama / GGUF backends (for quantized models)
Where can I download DeepSeek models?
Most DeepSeek models are available on the Hugging Face Hub. Popular variants include:
- deepseek-ai/deepseek-llm-r1-7b
- deepseek-ai/deepseek-llm-v2-14b
- deepseek-ai/deepseek-coder-v3
- deepseek-ai/deepseek-llm-r1-distill
Are quantized versions available?
Yes. Many DeepSeek models have int4 / GGUF quantized versions, making them suitable for lower-VRAM GPUs (8–16GB). These versions can be run using tools like llama.cpp, Ollama, or exllama.
Can I fine-tune or LoRA-adapt DeepSeek models?
Yes. Most models support parameter-efficient fine-tuning (PEFT) such as LoRA or QLoRA. Make sure your hosting stack includes libraries like PEFT, bitsandbytes, and that your server has enough RAM + disk space for checkpoint storage.
Can I host multiple DeepSeek models on the same GPU?
Yes, but only if you have high VRAM GPUs (e.g., 80–100GB A100)
How do I expose DeepSeek models as APIs?
You can serve models via RESTful APIs using:
- vLLM + FastAPI / OpenLLM
- TGI with built-in OpenAI-compatible API
- Custom Flask app over Ollama
- For production workloads, pair with Nginx or Traefik for reverse proxy and SSL.
Which model is best for lightweight deployment?
The DeepSeek-R1-Distill-Llama-8B or Qwen-7B models are ideal for fast inference with good instruction-following ability. These can run on RTX 3060+ or T4 with quantization.
What's the difference between R1, V2, V3, and Distill?
- R1: The first release of general-purpose chat/instruction models
- V2: Improved alignment, larger context length, better reasoning
- V3 (Coder): Optimized for code generation and understanding
- Distill: Smaller, faster versions distilled from R1 for inference efficiency
Is DeepSeek hosting available as a managed service?
At present, DeepSeek does not offer first-party hosting. However, many cloud GPU providers and inference platforms (e.g., vLLM on Kubernetes, Modal, Banana, Replicate) allow you to host these models easily.